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 A Complete SAT Solver for Satisfiability problem 
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Abstract- SAT solver plays an important role in cryptography, computer design, VLSI design. SAT is a NP-complete 
problem. In this paper a greedy algorithm is designed to find a complete SAT solver. There are strong incomplete 
SAT solvers; still complete SAT solvers have their own importance. Sometimes we need all the satisfiable instances 
for SAT problems. This algorithm describes how to get all the satisfiable instances of a SAT problem. This algorithm 
starts with all satisfiable instances of a clause present in a CNF Boolean function. Then these instances are improved 
to satisfy all the clauses present in the Boolean function. 
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1. INTRODUCTION 
Complexity of SAT solvers inform about the 
strength of security systems. Harder the SAT 
solver, stronger the security system. So SAT solvers 
are tools to design the strong security systems. It is 
also helpful for VLSI design. Defectives in VLSI 
design can be detected by SAT solvers. In this 
paper a greedy algorithm is discussed for complete 
Sat solver. SAT is NP-complete problem. Complete 
SAT solvers provide all the satisfiable instances for 
a SAT problem. In case of Incomplete SAT 
problem, either one satisfiable instance is obtained 
or nothing can be said about existence of an 
instance. Comparison to incomplete SAT solver, 
complete SAT solver has many alternatives for 
design issue. 
 
2. BOOLEAN FUNCTION IN CNF 
A Boolean Formula(BF) F is a logical expression 
defined over variables that takes the value in the 
set {True, False} which we will identify with {0, 1}. 
A truth assignment to set V of Boolean variables is 
a map σ: V → {0, 1}. A satisfying assignment for F 
is a truth assignment σ such that F evaluates to 1 
under σ. A Boolean formula has two special form, 
conjunctive normal form (CNF) and disjunctive 
normal form (DNF). In this area we consider only 
CNF of BF. BF is in CNF if it is conjunction (ᴧ) of 
clauses, where each clause is disjunction (ᴠ) of 
literals .Each literal is either a variable or its 
negation. For example F= (x ᴠ y) ᴧ (x ᴠ￢y ᴠ￢z) ᴧ z 
is in CNF with three variables and three clauses.  x, 
y, z,￢y,￢z are literals and x ᴠ y, x ᴠ￢y ᴠ￢z and 
￢z are clauses. 
 
3. PROBLEM DEFINITION 
 The SAT problem is shorthand for Boolean 
satisfiability problem. SAT problem refers to the 

question that given a Boolean expression, 
determine if there exists an assignment of TRUE (1) 
or FALSE(0) to all Boolean variables that make the 
entire Boolean expression to be TRUE. There is 
another equally important question that there 
exists no such assignment. Both of them are NP-
complete problem [3]. In the first case one 
assignment is sufficient if such assignment exists. 
Then we call the Boolean expression is satisfiable, 
otherwise we call it unsatisfiable which is proven 
in the second case which needs exhaustive search 
of all possible assignments. According to the rules 
of logical equivalence, each Boolean expression can 
be transformed into CNF form which sometimes 
simplifies the problem to some extent for exposing 
the underlying structure of the SAT problem, so 
that a couple of optimization strategies can be 
applied to reduce the size of the original problem. 
In addition, Boolean expressions in CNF can be 
easily treated as input for SAT solvers. In this 
paper, SAT problem inputs to the solver are 
assumed to be in general CNF form. 
 
4. EARLIER WORKS 
The satisfiability problem can be solved 
deterministically in time poly(n).2n time, where n is 
the number of literals and poly(n) is a polynomial in 
n. This worst-case upper bound can be decreased 
to poly(n).cn, c ≤ 2, if we restrict to k-SAT problems, 
where each clause in the Boolean CNF expression 
contains at most k literals. In [3], it has been shown 
that the 2-SAT problem can be solved in 
polynomial time using a randomized local search 
procedure. Local search is a well-known heuristic 
that is applied widely to solve the SAT problem. 
The best known bound for randomized 3- SAT 
problem is poly(n).(4/3)n [4]. Random k-SAT 
problems exhibit a so-called "Phase Transition 
Phenomenon" [6], when there are exactly k literals 
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in each clause, which randomly choose the number 
of clauses ck and the number of variables vk, the 
probability of the satisfiability of the problem falls 
sharply from near 1 to near 0 as the ratio rk=ck/vk 
passes some critical point called threshold. For 
example, when k=3, the threshold value is about 
4.25 (Figure 4.1). However, it is much more 
complicated to find the threshold value once k is 
larger than 3. In Figure 4.1, when rk is close to Y 
axis, the problem can be easily proved to be 
satisfiable. Conversely, the problem can be easily 
proved to be unsatisfiable when it is far from Y 
axis. The hardest instances appear at the region 
near the peak (when rk ≈ 4.25). In this region, 
enormous search space needs to be traversed until 
the solution is found. 

 
Figure. 4.1: SAT Problem Phase Transition 

Phenomenon [5] 
 

Random walk strategy [5] for SAT problem is one 
of the most efficient methods to search the solution 
for SAT problems by making use of the heuristic 
variable selection. It evolved from a pure 
(unbiased) random walk selection strategy. In this 
strategy, performance of sequential execution is 
significantly improved. But it is not suitable for 
parallel environment. 
 
 
5. SAT SOLVER 
Among all of the SAT solvers, two main categories 
of SAT solvers are widely studied by researchers. 
One is Complete SAT solver and another one is 
incomplete SAT solver. 
 
5.1 Complete SAT Solver 
Complete SAT solver is the algorithm that checks 
the satisfiability of the SAT problems. It guarantees 
to give the result of whether a SAT problem is 

satisfiable or unsatisfiable. Most of modern 
complete SAT solvers are based on the classical 
DPLL algorithm [6]. DPLL itself is still a highly-
efficient procedure for SAT problems even under 
contemporary performance standards. The 
fundamental principles of DPLL algorithm are 
backtracking and divide-and-conquer. It firstly 
simplifies the problem by assigning some values to 
some variables, so if the rest smaller problem is 
satisfiable, then the entire formula is satisfiable, 
otherwise it goes back to assign the opposite values 
to the appropriate previously assigned variables, 
and keep doing this recursively until a solution is 
found or the entire search space is traversed. DPLL 
actively calls two subroutines Unit Propagation and 
Pure Literal Elimination to enhance the efficiency of 
the algorithm, and recent researchers are also 
eagerly looking for efficient approaches to improve 
these two functions. 
 
5.2 Unit Propagation 
 Some clauses only contain one literal, there is only 
one choice for the value of the corresponding 
variable, and then these variables can be safely 
eliminated from the problem without affecting the 
search of the values of other variables. In addition, 
these eliminations may lead to the deterministic 
cascades of unit clause which is able to 
dramatically reduce the size of the original 
problem to avoid naive search or early detection of 
assignment conflict which is able to prove the 
unsatisfiability of the problem. 
 
5.3 Pure Literal Elimination 
 If one variable occurs in the problem with only one 
form (positive or negative), then all of the clauses 
that contain this variable can be eliminated from 
the problem since the Boolean value that makes the 
corresponding literal true can make all of those 
clauses be true, and there is only one choice for this 
value. While Pure Literal Elimination is not used in 
DPLL as intensively as Unit Propagation, because 
finding all of the clauses containing single form of 
variable is a computation intensive process, and 
sometimes, it is not worthwhile. 
 
 
6. ALGORITHM OF COMPLETE SAT 

SOLVER  
 In this discussion a greedy strategy is used in 
order to verify the satisfiability of SAT problem. At 
the initial stage a clause generates a set of possible 
instances that satisfy the 1st clause. In the 
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successive stages each instance considers the next 
clause in order to generate instances that satisfy 
present clause as well as all the previous clauses. 
After the last clause verification all possible 
satisfiable instances can be reported or problem is 
unsatisfiable. Details of the strategy are given 
below. Suppose the Boolean expression in CNF 
consists of m number of clauses in n variables. 
There will be 2n literals. Suppose number of literals 
in the clauses is not equal. Let n1, n2, ..., nm are 
number of literals present in clauses C1, C2, ..., Cm 
respectively. Denote a negative variable by 0, a 
positive variable by 1. From C1, n1 distinct 
instances can be formed where each instance 
contains exactly one literal (0/1) and rest n-1 places 
may have any value 0/1 (don't cares) such that these 
instances satisfy the clause C1. For generating 
instances leave those n-1 places blank. Now each 
instance generated in the first stage will generate 
n2 instances by assigning some literals in don't care 
positions that satisfy clause C2. Conflict instances 
are to be eliminated. So, in the second stage there 
will be at most n1 * n2 number of instances. 
Proceeding in this way, at the end the method will 
generate at most n1*n2*...*nm number of instances. 
But actual number is less than this due to conflict 
and repetition. The following example with two 
clauses in four variables illustrates the method. Let 
the clauses be C1 : x1 ᴠ x3 ᴠ￢x4 and C2: x2 ᴠ￢x3 

ᴠ￢x4 respectively. The first clause generates 
following three satisfiable instances where blank 
space may take any value 0 or 1. 
 
1 _ _ _,              _ _ 1_,               _ _ _ 0. 
 
Now each instance generated will verify second 
clause to generate new instances those satisfy both 
the clauses. First instance generates three, second 
two as there is one conflict (x3, ￢x3) and third one 
three (two new & one remains same) instances. 
 
1 1 _ _,               1 _ 0 _,               1_ _ 0. 
_ 1 1_ ,                _ _ 1 0. 
_ 1 _ 0 ,               _ _ 0 0 ,                _ _ _0. 
 
The blank spaces (hyphenated) may take any value 
0 or 1. The eight possibilities so generated, in which 
each of first seven instances generates four and last 
one generates eight instances, will satisfy both the 

clauses. We cannot have more than these 
possibilities that satisfy both the clauses.  
 
7. LIMITATION 
This algorithm is a sequential algorithm. So 
complexity is O(mⁿ). If this algorithm is 
parallelized using CUDA architecture or some 
multi-processor architecture it will reduce the time 
complexity to O(m). Here m is a small number. 
 
8. CONCLUSION 
If each stage generates the instances in parallel, 
then we need `m’ stages for a CNF Boolean 
expression consisting of m clauses. In stage-m we 
get either all possible satisfiable instances (after 
assigning all possible values to blank spaces left) or 
conclude that the Boolean expression is 
unsatisfiable. At each stage the computation can be 
done in parallel but the stages are to be executed 
sequentially. It is a complete solver and produces 
all assignments of variables which make the 
function true. However, the scope of parallelism is 
limited. 
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