
International Journal of Scientific & Engineering Research, Volume 4, Issue 10, October-2013 407
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

 A Complete SAT Solver for Satisfiability problem

 Ashis Kumar Dash

Abstract- SAT solver plays an important role in cryptography, computer design, VLSI design. SAT is a NP-complete
problem. In this paper a greedy algorithm is designed to find a complete SAT solver. There are strong incomplete
SAT solvers; still complete SAT solvers have their own importance. Sometimes we need all the satisfiable instances
for SAT problems. This algorithm describes how to get all the satisfiable instances of a SAT problem. This algorithm
starts with all satisfiable instances of a clause present in a CNF Boolean function. Then these instances are improved
to satisfy all the clauses present in the Boolean function.

Key Words: SAT, Boolean function, Complete SAT solver, Literals Clauses, CNF, NP-complete, Satisfiability,
Satisfiable instance, Boolean function.

..♦...

1. INTRODUCTION
Complexity of SAT solvers inform about the
strength of security systems. Harder the SAT
solver, stronger the security system. So SAT solvers
are tools to design the strong security systems. It is
also helpful for VLSI design. Defectives in VLSI
design can be detected by SAT solvers. In this
paper a greedy algorithm is discussed for complete
Sat solver. SAT is NP-complete problem. Complete
SAT solvers provide all the satisfiable instances for
a SAT problem. In case of Incomplete SAT
problem, either one satisfiable instance is obtained
or nothing can be said about existence of an
instance. Comparison to incomplete SAT solver,
complete SAT solver has many alternatives for
design issue.

2. BOOLEAN FUNCTION IN CNF
A Boolean Formula(BF) F is a logical expression
defined over variables that takes the value in the
set {True, False} which we will identify with {0, 1}.
A truth assignment to set V of Boolean variables is
a map σ: V → {0, 1}. A satisfying assignment for F
is a truth assignment σ such that F evaluates to 1
under σ. A Boolean formula has two special form,
conjunctive normal form (CNF) and disjunctive
normal form (DNF). In this area we consider only
CNF of BF. BF is in CNF if it is conjunction (ᴧ) of
clauses, where each clause is disjunction (ᴠ) of
literals .Each literal is either a variable or its
negation. For example F= (x ᴠ y) ᴧ (x ᴠ￢y ᴠ￢z) ᴧ z
is in CNF with three variables and three clauses. x,
y, z,￢y,￢z are literals and x ᴠ y, x ᴠ￢y ᴠ￢z and
￢z are clauses.

3. PROBLEM DEFINITION
 The SAT problem is shorthand for Boolean
satisfiability problem. SAT problem refers to the

question that given a Boolean expression,
determine if there exists an assignment of TRUE (1)
or FALSE(0) to all Boolean variables that make the
entire Boolean expression to be TRUE. There is
another equally important question that there
exists no such assignment. Both of them are NP-
complete problem [3]. In the first case one
assignment is sufficient if such assignment exists.
Then we call the Boolean expression is satisfiable,
otherwise we call it unsatisfiable which is proven
in the second case which needs exhaustive search
of all possible assignments. According to the rules
of logical equivalence, each Boolean expression can
be transformed into CNF form which sometimes
simplifies the problem to some extent for exposing
the underlying structure of the SAT problem, so
that a couple of optimization strategies can be
applied to reduce the size of the original problem.
In addition, Boolean expressions in CNF can be
easily treated as input for SAT solvers. In this
paper, SAT problem inputs to the solver are
assumed to be in general CNF form.

4. EARLIER WORKS
The satisfiability problem can be solved
deterministically in time poly(n).2n time, where n is
the number of literals and poly(n) is a polynomial in
n. This worst-case upper bound can be decreased
to poly(n).cn, c ≤ 2, if we restrict to k-SAT problems,
where each clause in the Boolean CNF expression
contains at most k literals. In [3], it has been shown
that the 2-SAT problem can be solved in
polynomial time using a randomized local search
procedure. Local search is a well-known heuristic
that is applied widely to solve the SAT problem.
The best known bound for randomized 3- SAT
problem is poly(n).(4/3)n [4]. Random k-SAT
problems exhibit a so-called "Phase Transition
Phenomenon" [6], when there are exactly k literals

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 10, October-2013 408
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

in each clause, which randomly choose the number
of clauses ck and the number of variables vk, the
probability of the satisfiability of the problem falls
sharply from near 1 to near 0 as the ratio rk=ck/vk
passes some critical point called threshold. For
example, when k=3, the threshold value is about
4.25 (Figure 4.1). However, it is much more
complicated to find the threshold value once k is
larger than 3. In Figure 4.1, when rk is close to Y
axis, the problem can be easily proved to be
satisfiable. Conversely, the problem can be easily
proved to be unsatisfiable when it is far from Y
axis. The hardest instances appear at the region
near the peak (when rk ≈ 4.25). In this region,
enormous search space needs to be traversed until
the solution is found.

Figure. 4.1: SAT Problem Phase Transition

Phenomenon [5]

Random walk strategy [5] for SAT problem is one
of the most efficient methods to search the solution
for SAT problems by making use of the heuristic
variable selection. It evolved from a pure
(unbiased) random walk selection strategy. In this
strategy, performance of sequential execution is
significantly improved. But it is not suitable for
parallel environment.

5. SAT SOLVER
Among all of the SAT solvers, two main categories
of SAT solvers are widely studied by researchers.
One is Complete SAT solver and another one is
incomplete SAT solver.

5.1 Complete SAT Solver
Complete SAT solver is the algorithm that checks
the satisfiability of the SAT problems. It guarantees
to give the result of whether a SAT problem is

satisfiable or unsatisfiable. Most of modern
complete SAT solvers are based on the classical
DPLL algorithm [6]. DPLL itself is still a highly-
efficient procedure for SAT problems even under
contemporary performance standards. The
fundamental principles of DPLL algorithm are
backtracking and divide-and-conquer. It firstly
simplifies the problem by assigning some values to
some variables, so if the rest smaller problem is
satisfiable, then the entire formula is satisfiable,
otherwise it goes back to assign the opposite values
to the appropriate previously assigned variables,
and keep doing this recursively until a solution is
found or the entire search space is traversed. DPLL
actively calls two subroutines Unit Propagation and
Pure Literal Elimination to enhance the efficiency of
the algorithm, and recent researchers are also
eagerly looking for efficient approaches to improve
these two functions.

5.2 Unit Propagation
 Some clauses only contain one literal, there is only
one choice for the value of the corresponding
variable, and then these variables can be safely
eliminated from the problem without affecting the
search of the values of other variables. In addition,
these eliminations may lead to the deterministic
cascades of unit clause which is able to
dramatically reduce the size of the original
problem to avoid naive search or early detection of
assignment conflict which is able to prove the
unsatisfiability of the problem.

5.3 Pure Literal Elimination
 If one variable occurs in the problem with only one
form (positive or negative), then all of the clauses
that contain this variable can be eliminated from
the problem since the Boolean value that makes the
corresponding literal true can make all of those
clauses be true, and there is only one choice for this
value. While Pure Literal Elimination is not used in
DPLL as intensively as Unit Propagation, because
finding all of the clauses containing single form of
variable is a computation intensive process, and
sometimes, it is not worthwhile.

6. ALGORITHM OF COMPLETE SAT

SOLVER
 In this discussion a greedy strategy is used in
order to verify the satisfiability of SAT problem. At
the initial stage a clause generates a set of possible
instances that satisfy the 1st clause. In the

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 10, October-2013 409
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

successive stages each instance considers the next
clause in order to generate instances that satisfy
present clause as well as all the previous clauses.
After the last clause verification all possible
satisfiable instances can be reported or problem is
unsatisfiable. Details of the strategy are given
below. Suppose the Boolean expression in CNF
consists of m number of clauses in n variables.
There will be 2n literals. Suppose number of literals
in the clauses is not equal. Let n1, n2, ..., nm are
number of literals present in clauses C1, C2, ..., Cm
respectively. Denote a negative variable by 0, a
positive variable by 1. From C1, n1 distinct
instances can be formed where each instance
contains exactly one literal (0/1) and rest n-1 places
may have any value 0/1 (don't cares) such that these
instances satisfy the clause C1. For generating
instances leave those n-1 places blank. Now each
instance generated in the first stage will generate
n2 instances by assigning some literals in don't care
positions that satisfy clause C2. Conflict instances
are to be eliminated. So, in the second stage there
will be at most n1 * n2 number of instances.
Proceeding in this way, at the end the method will
generate at most n1*n2*...*nm number of instances.
But actual number is less than this due to conflict
and repetition. The following example with two
clauses in four variables illustrates the method. Let
the clauses be C1 : x1 ᴠ x3 ᴠ￢x4 and C2: x2 ᴠ￢x3

ᴠ￢x4 respectively. The first clause generates
following three satisfiable instances where blank
space may take any value 0 or 1.

1 _ _ _, _ _ 1_, _ _ _ 0.

Now each instance generated will verify second
clause to generate new instances those satisfy both
the clauses. First instance generates three, second
two as there is one conflict (x3, ￢x3) and third one
three (two new & one remains same) instances.

1 1 _ _, 1 _ 0 _, 1_ _ 0.
_ 1 1_ , _ _ 1 0.
_ 1 _ 0 , _ _ 0 0 , _ _ _0.

The blank spaces (hyphenated) may take any value
0 or 1. The eight possibilities so generated, in which
each of first seven instances generates four and last
one generates eight instances, will satisfy both the

clauses. We cannot have more than these
possibilities that satisfy both the clauses.

7. LIMITATION
This algorithm is a sequential algorithm. So
complexity is O(mⁿ). If this algorithm is
parallelized using CUDA architecture or some
multi-processor architecture it will reduce the time
complexity to O(m). Here m is a small number.

8. CONCLUSION
If each stage generates the instances in parallel,
then we need `m’ stages for a CNF Boolean
expression consisting of m clauses. In stage-m we
get either all possible satisfiable instances (after
assigning all possible values to blank spaces left) or
conclude that the Boolean expression is
unsatisfiable. At each stage the computation can be
done in parallel but the stages are to be executed
sequentially. It is a complete solver and produces
all assignments of variables which make the
function true. However, the scope of parallelism is
limited.

REFERENCES
[1] Cook, Stephen "The complexity of theorem
proving procedures" Proceedings of the Third
Annual ACM Symposium on Theory of
Computing. Pages: 151-158, Year 1971.
[2] Papadimitriou, C.H, Computational
Complexity. 1994. Addison–Wesley.
[3] H. Papadimitrious. “On selecting a satisfying
truth assignment”. In the proceedings of the 32nd
Annual IEEE Symposium on Foundations of
Computer Science, FOCS'91, pages 163-169, 1991.
[4] Christos Papadimitrious, Evgeny Dantsin,
Andreas Goerdt, Edward A. Hirsch,Ravi Kannan,
Jon Kleinberg “A deterministic Algorithm for k-
SAT based on local search''.
[5] Wei and Bart Selman "Accelerating Random
Walks," In Principles and Practice of Constraint
Programming, pages: 61-67, Year 2002 .
[6] D.Singer."Parallel resolution of the satisfiability
problem: a survey." In E.Talbi,editor. Parallel
Combinatorial Optimization. John Wiley and Sons,
pages: 123-147, Year 2006.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 10, October-2013 410
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

IJSER

http://www.ijser.org/

